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Abstract Despite the importance of arbuscular my-
corrhizal fungi (AMF) to ecosystem processes, few
experimental tools are available to quantify AMF
contributions to process rates. In this study we examine
the efficacy of an experimental system consisting of
wildtype (WT) and different non-mycorrhizal (Myc−)
genotype pairs of tomato (Solanum lycopersicum L.),
specifically focusing on cv Micro-Tom. Two con-
ditions necessary to make such a system useful were
examined; (1) that the Myc− genotype(s) do not get
colonized in a full soil AMF community background,
while the WT does, and B) that there are no non-
target effects of the Myc− phenotype on soil

microbes. We assessed the second condition by
growing Myc− genotypes and WT in non-mycorrhizal
soil, monitoring plant growth (root, shoot biomass;
root length; root diameter size distribution) and soil
microbial community structure (PLFA analysis) as
indicators of any changes in root tissue quality or
rhizodeposition. All tested Myc− genotypes showed a
drastically reduced colonization in mycorrhizal soil.
However, in non-mycorrhizal soil, M161 had greater
root biomass and M20 greater microbial biomass
compared to WT. Only one of the Myc− mutants
examined fully met the criteria. We conclude that the
BC1/WT pair is a powerful experimental system and
recommend caution when using Myc− mutants in
mycorrhizal ecology.
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Introduction

Arbuscular mycorrhizal fungi (AMF) form symbiotic
associations with the majority of land plants (Smith
and Read 1997). Despite the pervasive influence this
symbiosis can have on a variety of terrestrial
ecosystem processes (Allen 1991; Rillig 2004),
gaining experimental access to the quantitative con-
tribution of AMF to process rates has proven a
challenge, since few methods exist to single out
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AMF effects (Rillig 2004). No method exists to
specifically eliminate AMF from soil, and researchers
have resorted to using general fungicides, such as
benomyl, to approximate this effect (e.g. Smith et al.
2000; Hartnett and Wilson 2002; Callaway et al.
2004). Alternatively, soil biota can be eliminated and
AMF selectively added back to the experimental
system. While a valid and often-used experimental
practice, disturbance introduced by methods aimed at
eliminating soil biota (e.g., steaming, chloroform-
fumigating, autoclaving) could introduce a number of
confounding effects (Endlweber and Scheu 2006).
Intricate associations between AMF and other soil
biota (e.g., Rillig et al. 2006) in particular, cannot be
easily re-established using microbial washes (Koide
and Li 1989) or other methods to reintroduce soil
microbes. Application of tracer isotopes can permit
measurement of nutrient fluxes, e.g. phosphate
(Schweiger and Jakobsen 2000) and recently, rotated
core-designs in which a static core (allowing AMF
hyphal access) is paired with rotated meshed cores
(continuously breaking AMF links) have been suc-
cessfully used to gain access to effects of the
mycorrhizal mycelium (Johnson et al. 2001, 2002).
However, the latter method is also not disturbance-
free. Therefore, there is still a need to explore other
experimental systems that might afford greater exper-
imental control and flexibility.

The recent availability of non-mycorrhizal (Myc–)
plant mutants, derived primarily for the biochemical
and physiological study of plant–fungus interactions
(e.g., Peterson and Guinel 2000; Gadkar et al. 2001;
Marsh and Schultze 2001; Harrison 2005; Paszkowski
et al. 2006), makes possible a different approach to
studying the role of AMF in plant-soil processes. The
clear advantage of using Myc− mutants is that the
experimental design is non-invasive, since AMF do
not have to be eliminated from the system. As a
consequence, this approach appears particularly suit-
able for studies of AMF influences on plant/soil
processes mediated by soil/rhizosphere microbial
communities (Cavagnaro et al. 2007a). Therefore, a
number of studies have employed Myc−/WT (wild
type) pairs to address such soil and plant ecological
questions (e.g. Augé et al. 2004; Marschner and
Timonen 2005; Neumann and George 2005 [in this
study the WT used was not the mutant progenitor];
Barker et al. 2006; Cavagnaro et al. 2004, 2006,
2007a, b).

Given the increasing popularity of such Myc−/WT
pairs, we here evaluated several new mutant tomato
genotypes (Table 1) in regards to their relative
suitability for addressing soil microbiological ques-
tions. For these genotypes/pairs data are not yet
available that would permit their use in asking soil
microbial and ecological questions. Our evaluation
criteria for this purpose include:

(1) In the presence of an entire AMF community
derived from a complex inoculum source (roots,
hyphae and spores) with the full soil microbiota
background, the Myc− tomato genotype(s) will
not, and the WT genotype will, become colo-
nized by AMF. The non-mycorrhizal habit of
Myc− mutants has generally been verified under
fairly controlled, artificial conditions with de-
fined inoculum sources representing only a few
species of AMF (e.g., Barker et al. 1998; Gao et
al. 2001; David-Schwartz et al. 2001, 2003;
Sekhara Reddy et al. 2007), but there are also
thorough tests under field conditions (Cavagnaro
et al. 2006). Much of the work in this regard has
been carried out with tomato (Solanum lycoper-
sicum L. Mill) rmc mutants (reduced mycorrhizal
colonization; Barker et al. 1998). The rmc
mutant restricted colonization by several AM
fungi to the formation of appressoria, abortive
penetrations of epidermal cells and extraradical
hyphae (surface colonization), but permitted
extensive cortical root colonization by at least
one isolate (Gao et al. 2001). However, the rmc
mutants did not become colonized in the field or
using field soil, where a fungal community
(consisting of several species) must have been
present (Cavagnaro et al. 2006, 2007a, b).

(2) Grown in the absence of AMF, WT and Myc−
genotype(s) will exhibit similar growth parame-
ters and will give rise to similar soil microbial
communities (an indicator for tissue quality and
rhizodeposition). Several researchers have tested
these assumptions for other tomato plants.
Cavagnaro et al. (2004) and Poulsen et al.
(2005), for example, found no differences in
growth within their plant pairs, but one study did
report differences in gross growth parameters
between Myc− and WT genotypes (for the
tomato pair rmc/76R: Marschner and Timonen
2005). While unusual in the literature, this latter
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result calls into question the uncritical use of
such pairs. Differences that occur between the
genotypes in the absence of AMF must be due to
non-target effects of the mutagenesis process,
and may therefore confound ecological hypoth-
esis testing.

Materials and methods

Plant material

Table 1 gives an overview of the tomato plant
genotypes used in the experiments described below.
The Micro-Tom cultivar was originally selected for
mutagenizations since it has small stature and fast
generation time, properties that facilitated screening
for Myc− mutants (Meissner et al. 1997). These
properties are also advantageous for a model system
for microcosm-based soil ecology studies.

Experiment 1: Mycorrhizal soil

In order to demonstrate that the mutant(s) will not
become colonized in a full soil background, we grew
them and the WT in a non-sterilized soil. Plants (all
genotypes listed in Table 1; n=5) were grown in
235 ml pots (one plant per pot) filled with field soil
from a local grassland (pH=6.6; organic matter content
5.72%; texture: 63.5% sand, 21.5% silt, 14.5% clay;
Kjeldahl N=0.32%; Olsen-P=10.8 mg g−1; Lutgen et
al. 2003). AMF are abundant at the site (Lutgen et al.

2003), and numerous AMF phylotypes are present
(Mummey and Rillig 2006, 2007). As no propagule
types were removed, spores, hyphae and colonized
root fragments would have all been available in the soil
to contribute to root colonization. All pots were placed
in a growth chamber with 18 h light, 60% relative
humidity, temperature at 20°C, and watered as needed
(two to three times per week). After 9 weeks of
growth, roots were extracted from the soil and their dry
weight determined. Root lengths were measured using
the WinRhizo V 3.10B root image analysis system
(Régent Instruments Inc, Québec, Canada). AMF root
colonization was measured microscopically at a mag-
nification of 200× after staining with Trypan Blue, as
described in Rillig et al. (1999). We obtained AMF-
colonized root length (in meters) by multiplying
percent root colonization by root length. Additionally,
soil extraradical hyphal lengths of AMF were mea-
sured microscopically at 200× after aqueous filtration-
extraction and staining with Trypan Blue (Rillig et al.
1999). We distinguished AMF hyphae from that of
other fungi by a set of morphological criteria described
previously (Rillig et al. 1999). One plant in each of the
WT and BC1 groups died, and samples from these pots
were not analyzed.

Experiment 2: Non-mycorrhizal soil

The second condition for successful use of WT/Myc−
experimental pairs is that plants perform similarly in
the absence of mycorrhizal fungi. In this experiment,
we steamed field soil (same as experiment 1) to
eliminate any AMF inoculum. We added other soil

Table 1 Description of tomato (Solanum lycopersicum) plants used in the experiments

Genotype Identity and properties Reference

WT Wildtype Solanum lycopersicum L. Micro-Tom (miniature tomato cultivar) Meissner et al. 1997
M161 Pre-mycorrhizal infection mutant (fast neutron mutagenization); single-locus

inheritance (recessive). Resistance to infection by spores but not AMF soil
hyphae (from neighboring plant) in a controlled environment study (Glomus
intraradices, Gigaspora margarita, Glomus mosseae)

David-Schwartz et al. 2001, 2003

M20 Pre-mycorrhizal infection mutant (fast neutron mutagenization); Myc− phenotype
segregates as a single Mendelian recessive locus (non-allelic to M161); more
suppressive Myc− phenotype than M161 in controlled environment study (with
Glomus intraradices). Seed germination, growth parameters and chlorophyll content
was not different from WT

David-Schwartz et al. 2003

BC1 An F2 segregant of the cross between WT and M161 Y. Kapulnik and P. Bonfante
(unpublished)
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microbiota back to the pots using a filtered wash of
the non-sterile soil (50 ml per pot); the wash was
obtained by passing soil solutions through Whatman
No. 1 paper filters with 11 μm particle retention size
(this method was sufficient to retain any AMF
propagules including hyphae; data not shown). As
mentioned above, there are limitations to this re-
introduction of soil microbiota, but this is a widely
practiced method, and it allowed us to test for effects
on (re-established) microbiota for the purposes of this
study. Tomato plants (all genotypes listed in Table 1;
n=10) were grown (one plant per 235 ml pot) in a
greenhouse under natural day light, supplemented
with 14 hours of additional light, for 10 weeks. Plants
were watered to field capacity as needed (two to three
times per week). At harvest, roots and shoots
(including fruits) were separated and dry weights
determined. We also measured root length and
diameter size distribution using the WinRhizo V
3.10B root image analysis system. AMF root coloni-
zation was also assessed, as above.

As an indicator of any differential effects of roots
or their products, we analyzed soil microbial commu-
nities on a subset of five randomly selected samples
from each treatment. For this purpose, soil (50 ml)
from each pot was immediately frozen after mixing.
Soil microbial communities were analyzed by phos-
pholipid fatty acid analysis (PLFA). PLFA analysis
was chosen since it generally is more sensitive than
DNA-based methods (Ramsey et al. 2006), in part
because it may also capture physiological responses.
PLFA extraction and analysis was carried out as
previously described (Ramsey et al. 2005). Briefly,
PLFAs were extracted and analyzed according to the
method of White and Ringelberg (1998) and analyzed
as described by Frostegård et al. (1993). Lipids were
removed from 5 g soil into chloroform using a
modified Bligh and Dyer extraction procedure. Phos-
pholipids were separated from other lipids by silicic
acid chromatography and derivatized to fatty acid
methyl esters (FAMEs) for analysis by gas chroma-
tography. Total PLFA content (ng g−1 soil) was used
as a measure of microbial biomass according to
Frostegård and Bååth (1996).

Statistical analysis

Plant growth and mycorrhiza data were analyzed
using analysis of variance (JMP 3.1.6.2, SAS Insti-

tute). Normal distribution of residuals was verified
using Shapiro–Wilk W test, and homogeneity of
variances with Levene’s test. Percentage data were
arcsine square-root transformed to obtain normality.
When assumptions of homogeneity were violated
despite transformation, we carried out Welch-
ANOVA, which adjusts degrees of freedom to
allow for differences in variation among groups, or
Kruskal–Wallis tests. Means comparisons were
conducted post hoc (only after ANOVA was signifi-
cant at P<0.05) using Tukey–Kramer HSD for
comparisons of data meeting parametric assumptions,
or Kruskal–Wallis multiple-comparison Z-value test
(NCSS 2001) for data that did not.

Relationships between the PLFA data of all
samples were examined using ordination techniques.
Initial detrended correspondence analysis indicated
that the data exhibited a linear, rather than unimodal,
response, justifying the use of linear ordination
methods (Lepš and Smilauer 2003). Therefore,
relationships between samples were evaluated by
redundancy analysis using CANOCO software
(Microcomputer Power, Ithaca, NY). This technique
finds the portion of the variability that can be
explained by experimental treatments. A Monte
Carlo permutation test based on 499 random permu-
tations was used to test the null hypothesis that
bacterial community profiles were unrelated to
tomato genotype.

Results

Experiment 1: Mycorrhizal soil

While there were no significant differences in root
weight (ANOVA; F3,14=1.62; P=0.23) or root length
(ANOVA; F3,14=0.42; P=0.74), AMF root coloniza-
tion was significantly different among the tomato
genotypes (Welch ANOVA; F3,7.04=9.66; P<0.007),
with substantially higher colonization in the WT than
the other groups (20 to 25 times higher in the WT
than in M20 or BC1; Table 2). This general pattern
also held for arbuscular root colonization (Welch
ANOVA [arcsine square-root transformed data];
F3,6.29=15.9; P=0.002), with M161 intermediate in
value. Colonized root length (in meters) differed
significantly among plants (Kruskal–Wallis H=9.01,
P=0.03), and was highest for WT, and lowest for BC1
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and M20, with M161 intermediate (even though the
latter was not significantly different [Z-test] from WT
owing to large variability). Extraradical AMF hyphal
lengths in the soil followed the same pattern
(ANOVA; F3,14=7.8; P=0.003), with WT plants
giving rise to twice the hyphal lengths of any other
group (Table 2).

Experiment 2: Non-mycorrhizal soil

None of the roots were found to be colonized by
AMF (data not shown). Final plant shoot and root
dry weights are shown in Fig. 1. Although shoot dry
weight was not significantly different among the
different genotypes (ANOVA; F3,36=1.24; P=0.31),
there were differences in root weights (ANOVA;
F3,36=8.29; P=0.0003), with M161 plants having
significantly greater root mass than other plants.

Total root length did not differ significantly among
the groups (F3,36=0.96; P=0.42; Fig. 2). There were
also no differences detected for average root diameter
between groups (F3,36=1.23; P=0.31; data not
shown). Length of five different root diameter size
classes was recorded between 0.0 to 1.0 mm. Multi-
variate analysis of variance indicated that there were
marginal differences (Wilks’ Lambda=0.48; P=
0.050), justifying the examination of individual
response variables. Univariate analyses of variance
indicated that two root diameter size classes exhibited
significant differences: 0.4–0.6 mm (F3,36=4.16; P=
0.01) and 0.8–1.0 mm (Welch-ANOVA; F3,19.3=3.96;
P=0.02), while the other three did not (0.0–0.2 mm:
F3,36=0.25; P=0.86; 0.2–0.4 mm: F3,36=2.58; P=
0.07; 0.6–0.8: F3,36=2.79; P=0.054). For these two
diameter size classes, no significant differences were
found between WT and other plants, only among

M161 and M20, and M20 and BC1 genotypes,
respectively.

Soil microbial biomass (represented by sum total
of PLFAs) was significantly different between geno-
types (ANOVA; F3,19=3.34; P=0.045; Fig. 3). In
particular, M20 had an about 50% higher mean

Table 2 Results (means and standard errors) from growing different tomato genotypes in non-sterile field soil containing AMF
(experiment 1)

Tomato
genotype

Root weight
(g pot−1)

Root length (m) Root length
colonized (%)

Root length with
arbuscules (%)

Root length
colonized (m)

Soil AMF hyphal
length (m g−1)

WT 0.255 (0.012) a 1.04 (0.06) a 30.3 (7.1) a 17.5 (4.4) a 323.4 (90.0) a 1.16 (0.17) a
M161 0.301 (0.037) a 1.21 (0.23) a 8.6 (4.4) b 7.6 (4.0) b 139.5 (84.9) ab 0.52 (0.06) b
M20 0.249 (0.032) a 1.02 (0.23) a 1.6 (0.5) b 0.1 (0.1) c 14.11 (5.33) b 0.59 (0.10) b
BC1 0.206 (0.025) a 0.89 (0.19) a 1.2 (0.4) b 1.0 (0.5) c 10.54 (3.16) b 0.66 (0.04) b

Different letters within a column indicate differences between means at P<0.05 (Tukey–Kramer HSD or Kruskal–Wallis Z-test, only
carried out if overall test was significant). See text for statistical test results.
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soil (experiment 2). For tomato genotype explanations see
Table 1
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microbial biomass than WT (planned pairwise com-
parison; P=0.006). None of the other genotypes
differed from WT (planned pairwise comparisons;
P>0.20).

Analysis of microbial community structure, as
indicated by redundancy analysis of PLFA mole-
percentages, showed no significant differences be-
tween tomato genotypes (F=0.93; P=0.51; Fig. 4).
Further examination of individual PLFAs with t-tests
revealed only one significant difference between WT
and BC1 samples at P<0.05 (cy17:0); an effect that
disappeared with adjustment for the large number of
comparisons which were made.

Discussion

Our aim was to critically test a set of novel tomato
Myc−/WT pairs for their suitability in soil microbial
ecology studies by checking behavior in mycorrhizal
and non-mycorrhizal soils. The most important
finding was that not all mutant genotypes tested here
were suitable, and that therefore careful scrutiny of
new mutants (or continued testing of this and more
established mutants) is an important task.

Behavior in mycorrhizal soil

Results from experiment 1 demonstrated that all
mutants were less colonized than the WT in a non-
treated field soil. The WT was highly colonized with
both hyphae and arbuscules compared to the mutants,
with production of extraradical hyphae providing
additional evidence of a functional mycorrhiza. Our
results show that only the M20 and BC1 genotypes
exhibited strongly reduced colonization with hyphae
or arbuscules in a full field soil background. Our
results confirm that M161 is less suppressive than
M20 (David-Schwartz et al. 2003); this was particu-
larly evident for the colonized root length data.
Previous work demonstrated that M20 and M161
can resist colonization only under certain controlled
conditions with specific AMF isolates (David-
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and standard errors; n=5) of different tomato genotypes grown
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explanations see Table 1
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Schwartz et al. 2001, 2003; Table 1). Hence, our
results are an important extension of these findings
for the purpose of developing Micro-Tom WT/Myc−
pairs for plant-soil interaction studies. While all
propagules in the field soil were included, hyphae
emanating from neighboring plants were not; thus our
results should be critically re-examined for plant-plant
interaction studies.

All Myc− genotypes are tested by exposing them
to AMF; however, often this occurs under controlled
conditions with frequently only few species of AMF
as inoculum (e.g., Barker et al. 1998; Gao et al. 2001;
David-Schwartz et al. 2001, 2003; Poulsen et al.
2005; Sekhara Reddy et al. 2007). The tomato rmc/
WT pair is probably the best-studied example for
which colonization tests under field conditions or
using field soil have occurred (e.g., Cavagnaro et al.
2006, 2007a, b). These are important for two reasons:
(a) AMF may differ in their ability to colonize mutant
roots (Gao et al. 2001); and (b) in a field microbial
background microbes that facilitate colonization could
be present, for example mycorrhization helper bacte-
ria (Garbaye 1994; Xavier and Germida 2003; Frey-
Klett et al. 2007).

Behavior in non-mycorrhizal soil

The second criterion is far more difficult to test, since
it is essentially impossible to completely rule out
every non-target effect on the plant’s physiology.
However, we here tested a range of response variables
expected to be important for soil microbial commu-
nities. The M161 genotype was found to produce
significantly more root biomass in non-mycorrhizal
soil (they also tended to have higher root weight in
experiment 1, even though this was not significant).
Divergence from the WT in this way disqualifies
M161 from being useful in a WT/Myc− pair since
root abundance is an important contributor to most
soil functions, for example soil aggregation (e.g., Six
et al. 2002). Additionally, analysis of soil microbial
biomass and communities showed that M20 is also
not suitable, as these plants gave rise to ~50% greater
microbial biomass compared to the WT, presumably
due to alteration of root exudate quantity or quality
and/ or tissue quality (Lynch and Whipps 1990; Jones
et al. 2004).

Other studies have undertaken similar tests in non-
mycorrhizal soils. Again, most of the work has been

carried out on the rmc/76R-WT tomato genotype pair.
Most studies have found no difference in growth
(Cavagnaro et al. 2004; Poulsen et al. 2005).
However, Marschner and Timonen (2005) grew
mutant (rmc) and WT tomato plants without mycor-
rhizal inoculum and found differences between the
plants. For example, in low light conditions, the rmc
genotype had approximately half the root mass of the
76R-WT, with a similar trend also in the high light
treatment. This indicates non-target effects that could
complicate interpretation of results under certain
circumstances. Augé et al. (2004) also explicitly tested
Myc− and WT bean plants (Phaseolus vulgaris) in
non-mycorrhizal conditions and found no differences
in shoot biomass, leaf P content, or soil and leaf water
potentials.

Synthesizing results from both our experiments,
we can conclude that the Micro-Tom BC1/WT pair
represents a suitable combination for an additional,
powerful experimental system for mycorrhizal ecolo-
gists. The finding that some mutants we tested were
not suitable is at least as important; it illustrates that
the clear advantages of employing this and other
mutant/WT pairs can only be fully realized by
continuously testing assumptions underlying their
use, including tests of new genotypes (as done here),
and under different experimental conditions, as has
been done with other mutants.
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