
Abstract While several recent studies have

described changes in microbial communities asso-

ciated with exotic plant invasion, how arbuscular

mycorrhizal fungi (AMF) communities respond

to exotic plant invasion is not well known, despite

the salient role of this group in plant interactions.

Here, we use molecular methods (terminal

restriction fragment length polymorphism analy-

ses based on the large subunit of the rRNA gene)

to examine AMF community structure in sites

dominated by the invasive mycorrhizal forb,

Centaurea maculosa Lam. (spotted knapweed),

and in adjacent native grassland sites. Our results

indicate that significant AMF community alter-

ation occurs following C. maculosa invasion.

Moreover, a significant reduction in the number

of restriction fragment sizes was found for sam-

ples collected in C. maculosa-dominated areas,

suggesting reduced AMF diversity. Extraradical

hyphal lengths exhibited a significant, on average

24%, reduction in C. maculosa-versus native

grass-dominated sites. As both AMF community

composition and abundance were altered by

C. maculosa invasion, these data are strongly

suggestive of potential impacts on AMF-mediated

ecosystem processes. Given that the composition

of AMF communities has the potential to differ-

entially influence different plant species, our re-

sults may have important implications for site

restoration after weed invasion.
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Introduction

The large ecological and economic costs associ-

ated with invasion of terrestrial ecosystems by

exotic plant species (Pimentel et al. 2000) has

stimulated great interest in elucidating how

invasive plant species influence, and are influ-

enced by, biotic and abiotic interactions.

Many studies have aimed at determining

aboveground impacts of exotic plant invasion,

such as influences on plant community structure

and organisms at higher trophic levels (reviewed

by Levine et al. 2003). However, it has become

increasingly apparent that a wide range of below-

ground biotic interactions play important roles in

determining plant interactions and ecosystem

function (e.g., Bever et al. 1997, 2003; Van der

Heijden et al. 1998, 2003; Callaway et al. 2001)

and that a much better understanding of plant and
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soil microbial interactions will be required to fully

understand plant community successional

dynamics in the face of invasive alien plant spe-

cies (Wolfe and Klironomos 2005). Several recent

studies indicate that invasive plant species can

impact soil microbial community composition and

function (e.g., Belnap and Phillips 2001; Kourtev

et al. 2002, 2003; Hawkes et al. 2005; Batten et al.

2006). The results of Callaway et al. (2004) indi-

cate that Centaurea maculosa Lam. (Asteraceae,

spotted knapweed), specifically, can cause shifts

in the composition of soil bacterial communities,

in part through the release of catechin, an allel-

ochemical exhibiting phytotoxic and antimicro-

bial activities (Bais et al. 2002; Vivanco et al.

2004). The results of Callaway et al. (2004) also

suggest that C. maculosa is able to modify the

microbial community in invaded soils to its

advantage, although the mechanistic basis for the

observed positive feedback between the soil

microbial community and C. maculosa remains

unclear.

Plant/mycorrhizal symbioses may be one of the

most important biotic interactions regulating

plant community structure and successional

dynamics (Allen 1991; Hartnett and Wilson

2002). Arbuscular mycorrhizal fungi (AMF) are

obligate biotrophs that form symbiotic associa-

tions with all but a few terrestrial plant families

(e.g., Brassicaceae, Chenopodiaceae). Repre-

senting a key interface between plant hosts and

soil mineral nutrients, AMF are important to all

but a few terrestrial ecosystems (Rillig 2004). In

addition to increasing inorganic nutrient avail-

ability, benefits of AMF to their hosts include

enhanced resistance to pathogens and other

environmental stresses, and improved water

relations (Allen 1991; Newsham et al. 1995,

Borowicz 2001).

The AMF form vast networks that potentially

link plants within communities together, allowing

for between-plant two-way trafficking of nutrient

resources (Simard and Durall 2004). The AMF

typically occur in ecosystems as mixed commu-

nities with multiple taxa potentially infecting a

single host plant. Although AMF are not gener-

ally thought to exhibit host specificity, a number

of recent studies indicate that host-plant prefer-

ences exist (e.g., Hartnett and Wilson 1999;

Helgason et al. 2002; Vandenkoornhuyse et al.

2002, 2003; Johnson et al. 2003; Klironomos

2003). Since individual AMF species may have a

multiplicity of effects on different hosts (Kliron-

omos 2003), AMF species composition would be

expected to differentially influence plant com-

petitive relationships, potentially facilitating plant

coexistence in some cases and exclusion or elim-

ination of different plant species in others. The

AMF community composition of different sites

may make them more or less amenable to

establishment of specific plant species (Van der

Heijden et al. 1998; Klironomos 2002, 2003; Hart

et al. 2003): hence, plant-facilitated alteration of

AMF communities may have relevance to

ecosystem restoration.

A few studies (Marler et al. 1999; Callaway

et al. 2001, 2003; Zabinski et al. 2002; Carey et al.

2004) indicate that the presence of AMF is central

to the invasiveness of C. maculosa. Although the

mechanisms by which AMF facilitate C. maculosa

invasiveness have yet to be fully elucidated, a

number of different greenhouse-based studies

have demonstrated that strong negative res-

ponses to the combined presence of AMF and

C. maculosa are plant species specific and may be

at least partially due to AMF-facilitated ‘‘luxury

P consumption’’ by C. maculosa at the expense of

mycorrhizal native plant neighbors (Zabinski

et al. 2002; Walling and Zabinski 2004). The

specificity of AMF-facilitated C. maculosa com-

petitiveness could be due to a number of poten-

tially interacting factors, including alteration of

AMF functionality resulting from differential

host responses of AMF species and/or alteration

of AMF community composition comprising

mycelial networks.

In Pseudoroegneria spicata Pursh (Blue-

bunch wheatgrass)/Festuca idahoensis Elmer

(Idaho fescue) communities of western Montana,

C. maculosa represents an aggressive mycorrhizal

invader which typically displaces native grass spe-

cies. In a previous study (Mummey et al. 2005) we

obtained evidence suggesting that the presence of

C. maculosa can alter AMF communities inhabit-

ing roots of neighboring plants. Thus, C. maculosa

may alter AMF community functionality at an

early stage in the invasion process. In the present

study, we examine AMF communities of soils
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associated with plant communities dominated by

C. maculosa in which P. spicata and F. idahoensis

have been almost completely displaced and com-

pare them with adjacent native plant communities

lacking C. maculosa. Our goal was to determine if

C. maculosa invasion alters overall site AMF

community composition in soil (potentially avail-

able to colonize roots) and overall AMF abun-

dance. We hypothesized that, due to AMF host

preferences and differential use of hyphal net-

works by different plants and plant communities,

displacement of native grasses by C. maculosa

results in significant alteration of both AMF spe-

cies composition and hyphal abundance.

Methods

Field site and sampling design

The study site is situated on a gently sloping

grassland 10 km north of Missoula, MT (Lutgen

et al. 2003; Mummey et al. 2006a, b) (46�45¢00N,

114�07¢30W). The area is highly susceptible to

invasion by C. maculosa and, with the exception

of a 18 · 24 m fenced area (Fig. 1), was treated

with the herbicide picloram (1.17 · 10–4 L m–2)

3 years prior to sampling. Inside the fenced, her-

bicide-free area C. maculosa dominates the plant

community and susceptible native plant species,

such as P. spicata and F. idahoensis, have been

almost completely eliminated. Since application

of herbicide, the non-treated area has served as

a seed reservoir for C. maculosa, which has

expanded into surrounding, predominantly native

plant communities (Fig. 1).

Eight sample locations were selected from

areas dominated by native grasses having no

C. maculosa presence within 1 m. Four meters

distant from each native grassland sample point,

an additional sample point was located in the

C. maculosa dominated area. From each of these

paired sample points, surface soil (1–10 cm depth;

cobbly loam Argixeroll) was collected using a

2 cm diameter soil core extractor and placed in

sterile plastic bags. Within 2 h of soil collection,

sample bags were frozen (–20�C) prior to sub-

sequent analyses.

Even though herbicide treatment was excluded

from only one site in this grassland, the sub-

sequent spread of C. maculosa from this remnant

population into the surrounding native vegetation

could be captured by replicate sample pairs. We

based our study design on the assertion that these

sample pairs, separated by known distances but

differing in direction from one another, would

allow for evaluation of affects due to plant com-

munity differences even if spatial variability due

Herbicide exclusion area
C. maculosa dominant

C. maculosa dominant

Alien grasses dominant

C. maculosa/grass transition area

Native grasses dominant

22 meters

18
 m

et
er

s

Fig. 1 Diagram of
experimental site
depicting relationships
between the herbicide
exclusion area, dominant
vegetation types and
sample locations (d).
Spatial scales are not
exact and are intended as
an aid for visualization of
the experimental design
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to other factors, such slope position, was present

on the site; an assertion supported by our results

(see below).

Since our goal was to examine overall differ-

ences in AMF community composition between

sites, no attempt was made to specifically examine

roots (as in our previous study; Mummey et al.

2005) or the rhizosphere of the different plants

present. Instead, our analysis of bulk soils should

allow for comparison of AMF communities

potentially available to infect plants of each site.

Laboratory analyses

Hyphae were extracted from each soil core and

standing total hyphal lengths measured according

to Rillig et al. (1999) employing aqueous mem-

brane-filtration with subsequent microscopic

examination at 200 · . Hyphal length was esti-

mated using the line intersect method as

described in Jakobsen et al. (1992) and Tennant

(1975). The AMF hyphae were distinguished

from hyphae of other soil fungi following the

morphological criteria described in Rillig et al.

(1999).

Plant-available soil phosphorus concentrations

were measured using the sodium bicarbonate

extraction method of Olsen et al. (1954).

To obtain genomic DNA templates for

molecular analyses, we homogenized soils by

kneading in plastic bags and extracted genomic

DNA from approximately 0.25 g field wet soil

using the PowerSoil DNA isolation kit (MoBio

Laboratories, Carlsbad, CA, USA).

The composition of AMF communities were

characterized using large subunit (LSU) rRNA

gene-based terminal restriction fragment length

polymorphism (T-RFLP) analysis. The method

involves end-labeling polymerase chain reaction

(PCR) amplicons through the use of fluorescent

molecules attached to the 5¢-end of each PCR

primer. The products of these reactions are

digested with select restriction enzymes having

specific recognition sequences. Since sequence

composition varies between LSU rRNA genes of

different AMF species or phylogenetic groups,

restriction enzyme recognition sites are also var-

iable. Terminal restriction fragments (T-RFs) are

separated by electrophoresis on polyacrylamide

gel or capillary DNA sequencers and visualized

by excitation of the fluor. The method provides

information about T-RF size distributions in each

sample, which can be compared between samples

to yield measures of community similarity.

The PCR amplification of these genomic tem-

plates was based on the AMF LSU rDNA-specific

5¢-labeled primer pair FLR3-FAM and FLR4-

HEX (Gollotte et al. 2004). We recently demon-

strated the specificity of this primer pair by

sequencing 139 clones containing FLR3/FLR4

amplicons derived from roots (C. maculosa,

Bromus tectorum, P. spicata, F. idahoensis and

E. esula) and soils collected within ((100 m of the

study site (Mummey and Rillig, in preparation).

While phylogenetic analyses of these cloned

sequences indicated that the Glomeromycota

were widely represented (Genbank accession

numbers DQ468685 to DQ468824), only one

sequence could be identified as non-AMF (Bas-

idiomycetes), indicating that these primers and

reaction conditions (see below) are highly specific

to Glomeromycota of our study sites.

We first determined which restriction enzymes

would optimally discriminate between the AMF

phylogenetic groups present in our study site.

This was achieved by conducting simulated

digestion of our cloned sequences with a broad

selection of different restriction enzymes, includ-

ing all common tetrameric restriction enzymes.

The results of these analyses indicated that of all

restriction enzymes examined, both Alu I and Taq

I both allowed for optimal discrimination be-

tween the phylogenetic groups represented in our

clone libraries, while predominantly yielding

T-RF sizes within the optimal size calling range

(between 45 and 500 bp) (Mummey and Rillig, in

preparation).

PCR amplification of soil DNA extracts con-

sisted of two PCR rounds, the first employing the

primer pair LR1 and FLR2 (van Tuinen et al.

1998; Trouvelot et al. 1999) and the second using

primers FLR3-FAM and FLR4-HEX. The 25 ll

reaction mixtures included 1 ll template DNA

(soil extract or PCR products from the initial

PCR), 100 pmol of each deoxynucleoside tri-

phosphate, 10 pmol of each primer and 2 U

HotMasterTM Taq DNA polymerase (Eppendorf,

Hamburg, Germany). Thermal cycling for all
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reactions included an initial denaturing step of

95� C for 5 min, 25 cycles (primer pair LR1/

FLR2) or 30 cycles (primer pair FLR3-FAM/

FLR4-HEX) consisting of 1 min at 95�C, 1 min at

58�C and 1 min at 65�C, followed by a final

extension step of 65�C for 10 min. Products of

these reactions were quantified using agarose-gel

electrophoresis with Low DNA Mass Ladder

(Invitrogen, Carlsbad, CA) as the size standard.

PCR products were purified using the Gen-

CatchTM PCR cleanup kit (Epoch Biolabs, Inc.

Sugar Land, TX) and subsequently digested with

the restriction enzyme Taq I (Fermentas Life

Sciences, Hanover, MD). Each digestion, con-

taining 16 ll purified PCR product and 5 U Taq I

in the manufacturer’s recommended buffer, was

incubated for 4h at 37�C.

The T-RF sizes in each sample were determined

using an ABI 3100 automated capillary DNA

sequencer (Applied Biosystems, Foster City, CA,

USA) with ROX-500 (Applied Biosystems) as the

size standard. T-RF size determination and quan-

tification was performed using Genemapper

software (Applied Biosystems). We used the

Microsoft-Excel macro Treeflap (Rees et al. 2004;

http://www.wsc.monash.edu.au/~cwalsh/treeflap.xls)

to convert each fragment size present to the nearest

integer value and to subsequently align peaks

against rounded sizes of the fragments. Relative

fluorescence of T-RFLP profiles derived from

different samples were standardized to 7,000

relative fluorescence units with a minimum peak

height threshold of 50 fluorescence units.

Using binary presence or absence data for each

sample, Jaccard distance matrixes were con-

structed (SPSS, Version 13.0). An additional

matrix was constructed consisting of dummy

variables identifying sample pairs having within-

group members or members from different

groups (C. maculosa or native plant site samples).

Using these matrixes, the computer program zt

(Bonnet and Van de Peer 2002) was employed to

examine differences between sample sites using a

modification of the Mantel test (Mantel 1967;

Kropf et al. 2004).

The AMF hyphal lengths, phosphorus con-

centrations and numbers of T-RF sizes in

T-RFLP profiles derived from each sample were

compared using Pairwise t-tests (SPSS).

Results

Extraradical hyphal lengths averaged 3.24 (SD

0.79) and 2.50 (SD 0.84) m g-1 for native grass and

C. maculosa sites, respectively (Fig. 2). Pairwise

analysis indicated that hyphal lengths were sig-

nificantly greater in samples collected in the

native grass-dominated area compared to the

C. maculosa dominated area (P < 0.001).

Plant available phosphorus (Olsen P) concen-

trations were found to be highly variable, aver-

aging 20.75 (SD 9.83) and 17.62 (SD 4.87) mg kg–1

for native grass and C. maculosa site samples,

respectively. No significant differences (P = 0.44)

among locations were found (data not shown).

Total number of T-RF sizes (both forward and

reverse) averaged 24.2 (SD = 5.8) and 20.8

(SD = 3.3) in T-RFLP profiles derived from

samples collected in native grassland and

C. maculosa-dominated sites, respectively. Pair-

wise analysis of all sample pairs indicated no

significant differences in T-RF numbers associ-

ated with the two plant community types. How-

ever, after removal of an anomalous sample pair

(sample pair no.3, which also had the lowest

P-content of all native grassland samples; 1.4 SD

below the mean), C. maculosa-associated samples

were found to have significantly fewer (on aver-

age 5.3) T-RF numbers than native grassland

samples (P = 0.041).
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Fig. 2 Hyphal lengths calculated for samples collected in
native grass-dominated and Centaurea maculosa-domi-
nated areas. Data points corresponding to native grass
and Centaurea maculosa-dominated areas are connected
for clarity. Pairwise t-tests indicated significantly reduced
hyphal length in samples obtained from Centaurea macul-
osa-dominated areas (P < 0.001)
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Ordination analysis of T-RFLP profiles derived

from all soil samples indicated separation of

samples from C. maculosa and native grass

dominated areas along both PCA 1 and PCA 2

(Fig. 3). Comparison of samples collected in

C. maculosa versus native grass-dominated areas

using the Mantel test indicated that the differ-

ences suggested by sample ordination were

significant (r = 0.22, P = 0.02).

A total of 46 T-RF sizes were found to be

common to T-RFLP profiles derived from at least

one native grassland and one C. maculosa-domi-

nated site sample. A total of 34 and 9 T-RF sizes

were unique to native grassland and C. maculosa-

dominated samples, respectively (Fig. 4).

Discussion

Our results clearly indicate that the soil AMF

community, and therefore the diversity of AMF

available to infect plant roots, was significantly

altered upon C. maculosa invasion. The data also

suggest that a gradient of change exists with some

overlap between groups; this could be indicative

of neighboring plants affecting AMF communi-

ties (Mummey et al. 2005; Hawkes et al. 2006) or

legacy effects of past presence of invaders (see

below). Moreover, the large number of T-RF

sizes found to be unique to the native grassland

relative to the C. maculosa-dominated site sam-

ples (34 and 9 T-RF sizes, respectively) suggest

that C. maculosa facilitates an overall decrease in

AMF diversity. Decreased AMF diversity could

potentially have implications for the ecosystem

since greater AMF species richness can facilitate

plant species diversity and ecosystem productivity

(Van der Heijden et al. 1998). Although further

analyses will be required to determine whether

decreased or altered AMF diversity represents an

important mechanism facilitating C. maculosa

invasiveness, this could be important to resto-

ration (e.g., seedling establishment; Van der

Heijden 2004) of C. maculosa invaded sites.

While our results indicated significant differ-

ences in AMF community composition between

sites, they also showed that 46 different T-RF si-

zes were shared in T-RFLP profiles derived from

both C. maculosa-dominated and native grassland

samples. Although this does suggest that a similar

subset of the AMF community was present in

both native grassland and C. maculosa-dominated

areas, it is important to keep in mind that our

analyses were conducted on soil that may contain

genetic materials (spores) of remnant AMF

communities established prior to C. maculosa

invasion. Additionally, C. maculosa was present

across the hillside, including our native grassland

sample points, just three years prior to our study.

Thus, our results likely underestimated differ-

ences in the AMF communities between the

invaded and non-invaded areas.

Even though our results indicate that alter-

ation of AMF community composition with
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C. maculosa invasion occurred on our study site,

it is not clear whether this AMF community

alteration is exclusive to the habit of an invasive

plant, or if similar patterns could have arisen by

any plant attaining local dominance in a patchy

community. Nevertheless, given the previous

studies indicating that the presence of C. macul-

osa can strongly influence soil microbial commu-

nity structural and functional attributes, a

potential mechanism (catechin, which may influ-

ence AMF, if not directly, indirectly via phyto-

toxicity and, potentially, antibacterial activities;

Bais et al. 2002), and the resulting unusual dom-

inance of this plant strongly suggest that we were

observing an aspect intricately connected with the

invasive habit of this plant species.

Our results showed not only altered AMF

molecular diversity but also decreased AMF

abundance with C. maculosa invasion, a finding

corroborated by other field-based studies. For

example, Lutgen and Rillig (2004) observed a

similar pattern in soil AMF hyphal lengths in

plots in which C. maculosa abundance was

experimentally reduced. Klein et al. (2006), in a

Number of samples containing each T-RF size

184
218
368
72
42
369
35
213
185
367
365
134
75
71
39
372
364
362
37
310
219
174
143
80
70
40
376
371
369
36
366
362
330
329
317
316
283
217
192
188
136
133
315
222
139
132

C. maculosa
samples

Native grassland
samples

12345678 1 2 3 4 5 6 7 8

150*
144
370
366
184
173
92
46
44
147
186
152
37
374
367
84
187
185
179
376
195
145
50
378
36
377
335
333
288
232
198
148
142
77
68
39
372
235
229
83
325

Native grassland
samples

12345678 1 2 3 4 5 6 7 8

C. maculosa
samples

Forward fragments Reverse fragments

Fig. 4 Graphical presentation of the number of occurrences of each forward and reverse T-RF size found in Centaurea
maculosa and native grass dominated sites. *Indicates T-RF size in base-pairs

Plant Soil (2006) 288:81–90 87

123



field experiment in which nutrient concentrations

were manipulated by sucrose addition, found

both total and active hyphal lengths to exhibit a

significant negative correlation with C. maculosa

biomass. Additionally, Batten et al. (2006) used

PLFA analysis to demonstrate that the presence

of Centaurea solstitialis (a close relative of

C. maculosa) significantly reduces biomarkers for

AMF in invaded sites.

Since we measured total standing biomass of

soil AMF hyphae, which does not permit sepa-

ration into living and dead hyphal length (Klein

and Paschke 2000), our data provide little insight

into functionality of AMF in the relation to

hyphal nutrient transport processes, which would

perhaps be better approximated by knowledge

of active hyphal lengths. However, since AMF

hyphae and hyphal products are of great impor-

tance for aggregate stabilization in grassland

ecosystems (Rillig and Mummey 2006), decreased

hyphal abundance, whether living or dead, could

have a pronounced influence on overall ecosys-

tem function via alteration of soil structure; this

may represent one of the mechanisms by which

C. maculosa increases soil erosive losses (Lacey

et al. 1989).

The reasons for the observed decrease in hy-

phal abundance are unclear but could be due to

decreased allocation of resources to AMF by

C. maculosa relative to native plant species,

alteration of hyphal decomposition rates, the

changes in AMF community composition, or

decreased overall active plant biomass to support

mycelial growth. Further research will be

required to elucidate these relationships.

In addition to biotic factors that could

potentially influence both AMF community

composition and abundance at our study site,

such as host preferences or differences in plant

exudates and decomposition products, a num-

ber of abiotic factors may have also played a

role. For example, soil moisture can be an

important driver of exotic plant invasions

(Eliason and Allen 1997; Booth et al. 2003;

Wood et al. 2006). Enloe et al. (2004) showed

that C. solstitialis invasion resulted in significant

alteration of soil water dynamics. Although soil

moisture was not measured in the present

study, C. solstitialis and C. maculosa have very

similar growth habits and may similarly influ-

ence soil moisture. Since soil water availability

is known to have a strong influence on AMF

communities and their function (Augé 2001,

2004) potential changes could have strongly

influenced our results.

Similarly, pH is a key soil variable that broadly

influences soil abiotic and biotic properties,

including nutrient availability and other factors

which can directly influence AMF (Clark 1997).

Potential C. maculosa-facilitated alteration of this

important variable (Callaway et al. 2003) could

also have influenced AMF characteristics on our

study site. Finally, plant species are known to

differentially influence nutrient cycling (e.g.,

Hobbie 1992), which could cause changes in AMF

communities. Even though we did not find evi-

dence for changes in soil phosphate this may be

due to high variability and relatively low re-

plication masking effects. Additionally, other

nutrients which we did not measure may have

been altered.

In summary, our results indicate that invasion

of a native grassland ecosystem by C. maculosa

results in alteration of AMF community compo-

sition with concurrent decreases in extraradical

hyphae in the soil. Many questions remain to be

addressed concerning how these changes influ-

ence plant competitive relationships and ecosys-

tem function. Further work is clearly needed to

determine how alteration of AMF communities

influences plant competitive relationships during

C. maculosa invasion and the role played by AMF

community composition in determining seedling

establishment and subsequent vigor. The time

required for an altered AMF community to revert

to its original state, even if a native community is

establishing, is unknown. If persisting, altered

AMF community composition in invaded areas

may represent a limiting factor for restoration

efforts even after removal of invasive species, i.e.

there may be a soil ecological legacy of invasion.
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