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Summary
Polyphasic studies that used phospholipid fatty acid analysis (PLFA) in conjunction
with community level physiological profiling (CLPP) or PCR-based molecular methods
were analyzed in order to evaluate the power of each strategy to detect treatment
effects on soil microbial community structure (MCS). We found no studies where
CLPP or PCR-based methods differentiated treatments that were not also
differentiated by PLFA. In 14 of 32 studies (44%), PLFA differentiated treatments
that were not resolved by CLPP analysis. In 5 of 25 studies (20%), PLFA differentiated
treatments that were not resolved by PCR-based methods. We discuss PLFA, CLPP,
and PCR-based methods with respect to power to discriminate change in MCS versus
potential for characterization of underlying population level changes.
& 2006 Elsevier GmbH. All rights reserved.
The response of soil microbial community struc-
ture (MCS) to perturbation is of interest to
researchers seeking biologically relevant variables
in experimentally or naturally altered ecosystems.
For the current discussion, MCS is defined as the
number and relative abundance of microbial
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populations in soil. Three strategies for the
elucidation of treatment effects on MCS dominate
contemporary Microb. Ecol.: community level
physiological profiling (CLPP), phospholipid fatty
acid analysis (PLFA), and PCR-based methods such
as denaturing gradient gel electrophoresis (DGGE),
terminal restriction fragment length polymorphism
(T-RFLP), ribosomal intergenic spacer analysis
(RISA), and randomly amplified polymorphic DNA
(RAPD) (Øvre (as, 2000). Independent assessments
have indicated that each approach returns similar
results with respect to the demonstration of
rved.
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treatment effects (Widmer et al., 2001; Ritchie
et al., 2000). The relative power of each to
elucidate treatment effects has rarely been com-
pared. In one study, PLFA was demonstrated to be
more sensitive than CLPP and a PCR-based method
(guanine plus cytosine ratio) to changes in MCS
across a gradient of grassland management inten-
sities (Grayston et al., 2004). In another study, the
ability of PLFA and a molecular method, length
heterogeneity PCR (LH-PCR), to resolve the effects
of tillage and ground cover on MCS were compared
using discriminant analysis (Dierksen et al., 2002).
In that study, the inclusion of molecular data into
the discriminant analysis did not improve predic-
tive power of the analysis above that which was
achieved using PLFA data alone. This study raises
the hypothesis that using a polyphasic approach to
detect change in MCS is no more useful than PLFA
data alone. Here, we tested this hypothesis by
searching for studies that used PLFA in conjunction
with CLPP or PCR-based methods in order to
evaluate the question: Has CLPP or a PCR-based
method been used to detect a treatment effect on
MCS that was not also detectable by PLFA?

Searches of the Web of Science and CSA Illumina
databases with various combinations of the words
PLFA, FAME, CLPP, fatty acids, T-RFLP, Biologs,
DNA, PCR, 16s, rDNA, DGGE, TGGE, gel electro-
phoresis, soil, community structure, and polyphasic
returned 53 studies that used PLFA in conjunction
with CLPP or PCR-based methods to identify
treatment effects on MCS. While not exhaustive,
the highest impact factor soils journals were among
the journals included (see references in Table 1).
Therefore, the sample should represent the current
state of knowledge. Papers in which PCR-based
methods were used to track specific populations
either by DGGE band excision and sequencing or by
the use of primer sets specific to phylogenetic
groups were not considered to be demonstrations
of change in MCS unless including a general test of
significant difference (or correlation) at the total
community level.

No studies were found where CLPP or PCR-based
analyses were used to differentiate a treatment
effect on soil MCS that was not also identified by
PLFA of the same samples. Conversely, in 14 of 32
studies (44%), PLFA differentiated treatments that
were not resolved by CLPP analysis of the same
samples. In 5 of 25 studies (20%), PLFA differentiated
treatments that were not resolved by a PCR-based
method. These studies are arranged categorically in
Table 1. In the five studies where PCR-based
methods were unable to detect differences detected
by PLFA, the specific PCR-based methods used were
LH-PCR, DGGE (twice), RISA, and DNA RAPD (Dierk-
sen et al., 2002; Thirup et al., 2003; Leckie et al.,
2004; Ritz et al., 2004; Suhadolc et al., 2004). If the
MCS changes detected by PLFA are real in all cases,
our analysis implies that studies using only CLPP or a
PCR-based method incur a type II error rate of
approximately 44% and 20%, respectively.

Of the three general strategies for detecting MCS
changes, PCR-based methods are used in a higher
proportion of studies than PLFA or CLPP (Fig. 1),
probably because PCR-based methods offer the
greatest potential for characterization of under-
lying population level changes. However, the power
of PCR-based methods to resolve treatment effects
on the total soil microbial community may be
limited compared to PLFA because less statistically
relevant information can be gained from pattern
analysis of PCR-generated fingerprint patterns than
from PLFA profiles. One explanation of this is that in
a typical DGGE analysis, 20–50 detectable and
quantifiable bands may vary in intensity by one or
two orders of magnitude (due to detection and
imaging limitations), while in a typical PLFA profile
more than 70 continuous variables (PLFA peaks) can
be detected in concentrations ranging over at least
3 orders of magnitude. Further, quantitative
estimates of population densities gleaned from
community level analyses must be considered
carefully due to so-called ‘‘PCR bias’’ introduced
by the exponential amplification of DNA targets.
Rarefaction analysis of molecular data allows
estimates of relative population abundance within
a sample (e.g. Basiliko et al., 2003). Still, quanti-
fication of change in the abundance of individual
populations requires support from additional ana-
lyses, such as species/group specific quantitative
PCR (Yu et al., 2005).

CLPP produces large numbers of continuous
variables and so should be highly sensitive to
change in MCS. However, CLPP requires growth of
microbes on carbon substrates in microtiter plates
(i.e. metabolism). Many organisms present in soil
will not grow in the wells and, conversely, organ-
isms growing in the wells may not have been active
in the soil. Also, not all substrates catabolized by
soil microbes are represented. Thus, CLPP probably
loses sensitivity due to a bias toward under-
representing metabolic diversity.

It hence appears that PLFA offers the most
powerful approach to demonstrating change in
MCS, and that monophasic studies relying on CLPP
or PCR-based methods are prone to high type II
error rates. On the other hand, PLFA offers limited
insight into changes in specific microbial popula-
tions. While certain PLFAs can be used as biomar-
kers for specific populations (White and Ringelberg,
1998), the resolution of population level change



ARTICLE IN PRESS

Table 1. Authors, year, and treatment type of polyphasic studies in which PLFA was used in conjunction with a
molecular method or CLPP

Studies in which PLFA resolved a treatment effect that molecular
methods did not

Studies in which PLFA resolved a treatment effect
that CLPP did not

Dierksen et al. (2002) Methods comparison B(a(ath et al. (1998) Contamination
Leckie et al. (2004) Plant cover type/nutrient availability Bossio et al. (2005) Land use change
Ritz et al. (2004) Spatial structure Bundy et al. (2004) Contamination
Suhadolc et al. (2004) Heavy metals Entry et al. (2004) Land use
Thirup et al. (2003) Introduced bacteria and fungicide Grayston et al. (2001) Cover-type gradient

Studies in which PLFA and CLPP resolved the same treatment
effect

Ibekwe and Kennedy
(1998)

Methods comparison

Bossio et al. (2005) Plant cover type Ibekwe et al. (2001) Fumigants
Cahyani et al. (2003) Succession O’Donnell et al. (2001) Cover type/fertilizers
Cahyani et al. (2004) Succession Pankhurst et al. (2001) Salinity/alkalinity
Clegg et al. (2003) Plant cover type Priha et al. (2001) Land use
Ebersberger et al. (2004) Global change Priha et al. (1999) Cover type
Griffiths et al. (1997) Contamination Soederberg et al. (2002) Cover type
Griffiths et al. (1999) Nutrient availability Thirup et al. (2003) Succession
Hernesmaa et al. (2005) Plant cover type Yao et al. (2000) Land use

Ibekwe et al. (2002) Plant cover type Studies in which PLFA and molecular methods
resolved the same treatment effect

Ibekwe et al. (2001) Fumigants Broughton and Gross
(2000)

Productivity gradient

Kandeler et al. (2000) Contamination Certini et al. (2004) Spatial structure
Landeweert et al. (2003) Methods comparison Collins and Cavigelli

(2003)
Elevation gradient

MacNaughton et al.
(1999)

Contamination Ellis et al. (2001) Methods comparison

Miethling et al. (2000) Plant cover type/spatial structure Fang et al. (2001) Cover type
Patra et al. (2005) Plant cover Fritze et al. (2000) Contamination
Ritchie et al. (2000) Methods comparison Kelly et al. (1999) Contamination
Suzuki et al. (2005) Plant cover type Macdonald et al. (2004) Cover type
Turpeinen et al. (2004) Contamination Miethling et al. (2000) Land use/inoculation
Widmer et al. (2001) Methods comparison Pankhurst et al. (2002) Spatial structure
Yang et al. (2003) Succession Pietikaeinen et al. (2000) Fire

Ritz et al. (2004) Spatial structure
Schutter et al. (2001) Land use
Schutter and Dick (2001) Carbon substrates
Siciliano and Germida
(1998)

Inoculants

Siciliano et al. (1998) Cover type
Thompson et al. (1999) Contamination
Widmer et al. (2001) Methods comparison

Choice of methods for soil microbial community analysis 277
within communities is coarse due to several factors
including: (1) overlap exists in the PLFA composi-
tion of microorganisms; (2) determination of
signature PLFAs for specific microbes requires their
isolation in pure culture; and (3) PLFA patterns for
individual populations can vary in response to
environmental stimuli. Therefore, where popula-
tion level information is needed, PCR-based meth-
ods offer avenues for hypothesis testing not
available through PLFA.
In some situations, it is more important to
employ the most powerful method of demonstrat-
ing a treatment effect on MCS than it is to use a
method that provides information on underlying
changes in microbial populations. Statistical
power depends on effect size, variability, and
sample size, and could also be related to the
number of response variables in a multivariate
analysis. Hence there are a number of possible
reasons for the observed difference in power for
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Figure 1. Percentage of soil microbial community
structure studies using CLPP (light gray bars), PLFA (open
bars), and PCR-based methods (dark gray bars), by year,
from 1998 to 2004. Results were compiled from a search
of CSA Illumina database. The search terms ‘‘soil’’ and
‘‘microbial community structure’’ returned 250 studies,
of which 200 (80%) used one of the three major strategies
for the determination of microbial community structure.
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the various strategies, including the number of
response variables a method yields, data type
(continuous vs. presence/absence), and cultivation
or PCR biases. Especially in situations where it is
important to minimize type II errors (such as
questions involving pollution effects), a hierarchi-
cal analysis approach may be warranted: first, PLFA
would be used to detect treatment differences,
and subsequently (if an effect was found) a PCR-
based method for resolving particular populations
involved in the detected response. For example,
Callaway et al. (2004a) used PLFA to show that
microbial communities differed between rhizo-
spheres of native grasses and an invasive weed.
Then Callaway et al. (2004b) used a PCR-based
method to explore the effects of differences in
microbial communities between rhizospheres of
the weed grown in its native soil and in soil from its
invaded range in a situation where further identi-
fication of populations could have been valuable
(Callaway et al., 2004b). Particularly in soil
ecology, lack of power is a significant problem
(e.g. Klironomos et al., 1999) that can be exacer-
bated by a choice of method that does not
maximize power.
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