
Published Papers by MPG Scientists
Block title
The Journal of Wildlife Management

The New Phytologist

Restoration Ecology
Biocrusts Lichen and Moss
The term biological soil crust (or biocrust) encompasses the diverse community of moss, algae, lichens, and cyanobacteria living within the top inch of soil. Biocrusts form in all terrestrial ecotypes, but people often overlook them in favor of larger species. Biocrusts stabilize the soil by aggregation, reducing erosion. They increase soil fertility by enhancing nutrient cycling. A healthy biocrust increases infiltration and plays a role in succession towards a diverse and functioning ecosystem. They are especially important in arid and semi-arid ecosystems.
Towards the goal of restoring land to healthy ecosystem function, we consider all facets of the land, not just the vascular plants that may inhabit it. Unaided, biocrusts may take from decades to a century to reestablish after degradation. We would like to determine the most effective and practical methods to restore biological soil crusts.
Research and updates found here include projects on moss, lichens, and biocrust as we delve into this charismatic and important part of the ecosystem.

Restoration Ecology
Biocrusts Lichen and Moss
The term biological soil crust (or biocrust) encompasses the diverse community of moss, algae, lichens, and cyanobacteria living within the top inch of soil. Biocrusts form in all terrestrial ecotypes, but people often overlook them in favor of larger species. Biocrusts stabilize the soil by aggregation, reducing erosion. They increase soil fertility by enhancing nutrient cycling. A healthy biocrust increases infiltration and plays a role in succession towards a diverse and functioning ecosystem. They are especially important in arid and semi-arid ecosystems.
Towards the goal of restoring land to healthy ecosystem function, we consider all facets of the land, not just the vascular plants that may inhabit it. Unaided, biocrusts may take from decades to a century to reestablish after degradation. We would like to determine the most effective and practical methods to restore biological soil crusts.
Research and updates found here include projects on moss, lichens, and biocrust as we delve into this charismatic and important part of the ecosystem.

FEMS Microbiology Ecology

Wildlife Research

Ecological Monographs
Molecular plant pathology
Soils Plants and Invasion
Plants live in tight association with microbes, especially belowground where fungi and bacteria live on and inside the roots of plants. The relationship can be beneficial or harmful to the plant. Some microbes cause plant diseases by decomposing roots. Others trade nutrients with the roots in return for sugars produced aboveground by leaves.
We investigate two main aspects of the relationship between plants and microbes in the soil. First, as it pertains to weeds, we want to know if soil microbes can help or hinder plant invasions. Three highly invasive weeds of contrasting life history strategies; cheatgrass, knapweed and leafy spurge, co-occur with remnants of native plant vegetation. This creates a unique opportunity to observe, characterize, and manipulate interactions between plants and belowground microbial communities. We outline a number of short, intermediate and long-term research projects that will significantly enhance our knowledge regarding plant microbe interactions and soil processes, with the overall goal to better understand, predict and counteract plant invasions, and to restore and manage invaded ecosystems.
Second, we seek to understand how the relationship between plants and soil influences the function of ecosystem processes. Soil microbes are responsible for organic matter decomposition and nutrient cycling between the atmosphere and the land. On this project we collaborate with the Earth Microbiome Project (EMP). The goal is to map and understand the diversity of microorganisms in habitats around the world. We mapped microbial diversity and function across gradients of weed invasions.

Ecology Letters
Soils Plants and Invasion
Plants live in tight association with microbes, especially belowground where fungi and bacteria live on and inside the roots of plants. The relationship can be beneficial or harmful to the plant. Some microbes cause plant diseases by decomposing roots. Others trade nutrients with the roots in return for sugars produced aboveground by leaves.
We investigate two main aspects of the relationship between plants and microbes in the soil. First, as it pertains to weeds, we want to know if soil microbes can help or hinder plant invasions. Three highly invasive weeds of contrasting life history strategies; cheatgrass, knapweed and leafy spurge, co-occur with remnants of native plant vegetation. This creates a unique opportunity to observe, characterize, and manipulate interactions between plants and belowground microbial communities. We outline a number of short, intermediate and long-term research projects that will significantly enhance our knowledge regarding plant microbe interactions and soil processes, with the overall goal to better understand, predict and counteract plant invasions, and to restore and manage invaded ecosystems.
Second, we seek to understand how the relationship between plants and soil influences the function of ecosystem processes. Soil microbes are responsible for organic matter decomposition and nutrient cycling between the atmosphere and the land. On this project we collaborate with the Earth Microbiome Project (EMP). The goal is to map and understand the diversity of microorganisms in habitats around the world. We mapped microbial diversity and function across gradients of weed invasions.

PLoS ONE
Avian Ecology
We seek to understand how birds use the habitats available and how that will change as we work to create more diverse plant communities. We also host researchers that document migrations of raptors and songbirds across MPG.
In this section of the research pages, you will find links to reports and updates from all the researchers involved with avian ecology, posted chronologically. The links will show you more in-depth reports on our findings. The three main projects covered here are:
Songbird Counts- A grid of sampling points covers MPG with 560 points. We visit each point 3 times a year, once in winter and twice during the songbird breeding season. We record, by ear or by sight, all the birds near that point for 10 minutes.
Songbird Banding- The University of Montana Bird Ecology Lab, UMBEL, runs several trapping stations at MPG as part of their regional songbird monitoring program. UMBEL sets up very fine nets that are nearly invisible to birds in brushy habitats. Songbirds fly into the nets and become entangled. The researchers take the birds from the nets and affix a numbered band to their leg before releasing them.
Raptor Research- The Raptor View Research Institute monitors raptor populations on MPG and counts raptors that migrate past MPG in the spring and fall. Raptor View researchers have placed transmitters on osprey and golden eagles that use the Bitterroot Valley.
